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 ABSTRACT – This paper applies reinforcement learning techniques. 

to the game Minesweeper without aiming to use neural 

networks. Four different strategies were used over two different 

algorithms. Two of the strategies were able to achieve notable 

win rates after training. Furthermore, when more data was used 

in training, a strategy using multiple agents was able to compete 

with the performance of neural networks. 

I. INTRODUCTION 

 

HE game of Minesweeper has been a popular logic game 

for decades, providing players with the challenge of 

revealing hidden mines on a grid-based board without 

detonating any of the mines. Minesweeper requires strategic 

decision making and logical deduction. Since the board state 

begins with each space being covered, it presents a unique 

challenge to try and solve the board using reinforcement 

learning. 

 

Minesweeper is played on a rectangular grid, where each cell 

either does or doesn’t contain a mine. For clarification, 

Minesweeper is a digital game played on a device, and not a 

physical game with pieces. In order to win the game, a player 

must reveal all empty cells without revealing a mine. When an 

empty cell is uncovered, it will have a number indicating how 

many mines are adjacent to it. A mine is adjacent to a space if 

it resides within the spaces directly to the sides, or the 

diagonals, of the space. Below are three figures, which 

represent the initial board, what the board may look like after 

the first player interaction, and a solved board. The board used 

was a 9x9 grid with 10 mines. The flags are also placed by the 

player, but only serves as a tool for the player to remember what 

spaces he/she thinks to be a mine. 

 

 
Figure 1: Minesweeper board in different points of gameplay 

 

 
 

Reinforcement learning (RL) has gained significant attention 

as a powerful approach to machine learning, particularly in the 

domain of autonomous decision making. RL algorithms learn 

to make sequential decisions by interacting with an 

environment and receive feedback in the form of rewards. 

Understanding how different reinforcement learning algorithms 

perform in such environments improves our understanding of 

decision-making agents. 

 

Complex unknown environments pose unique challenges for 

RL algorithms. These environments may have high 

dimensional states and uncertain reward structures. 

Furthermore, the true state of the environment may be obscured 

to the agent. Additionally, limited prior knowledge about the 

environment further complicates the learning process. 

Consequently, assessing the performance of different RL 

strategies in these scenarios can be attributed to a test of their 

effectiveness and reliability in real-world applications. 

 

Minesweeper constitutes a complex unknown environment 

for RL. Additionally, it is proven to be NP-complete, which 

indicates it as a complex computing problem for any approach 

[1]. 

II. REINFORCEMENT LEARNING 

 

Reinforcement learning is a machine learning approach that 

enables an agent to learn optimal decisions by interacting with 

an environment and receiving feedback in the form of rewards. 

At its core, RL involves an agent, environment, states, actions, 

rewards, and a learning process [2]. The agent is given the state 

of the environment, from which the agent chooses an action 

based on that state. The environment is then updated according 

to the agent’s action, transitioning into a new state, and a reward 

is produced and given as feedback to the agent. The agent’s goal 

is to learn the optimal actions to take in the environment in order 

to maximize the reward it earns. 
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Figure 2: Diagram of RL cycle [3]. 

 

This paper uses the formalization of RL as a Markov 

Decision Process, which is defined as a tuple (S, A, P, R, 𝛾) [2]. 

• S: The set of possible states of the environment. 

• A: The set of possible actions the agent can make. 

• P: The state transition probability function, or the 

probability of one state transitioning to another. 

• R: The reward function. 

• 𝛾: The discount factor, a hyperparameter that 

determines the importance of future rewards. 

 

Now with this formal definition, it is easier to see and define 

how complex Minesweeper can be for reinforcement learning. 

Firstly, the set of possible states for Minesweeper can become 

very large. This paper evaluates performance on a 9x9 grid with 

10 mines. The following is an equation that is an estimation of 

the number of possible states: 

 

|𝑆| ≈
81!

71! 10!
⋅ 271 = 4.43522867 × 1033  

 

The first term represents the number of ways we can place 10 

mines on the 9x9 board, and the second term represents that 

each space, besides the mines, can either be covered or 

uncovered. Furthermore, the possible actions that can be taken 

by the agent contributes to the complexity. The agent will not 

be allowed to place flags, but only attempt to uncover each 

unique space. For each of the possible states, the agent needs to 

learn which of the 81 locations to uncover for optimality. Thus: 

 
|𝐴| = 81 

 

For the purposes of this paper, the state transition probability 

function won’t be prevalent in the used algorithms, which will 

be introduced shortly. The reward function varies depending on 

the environment and can heavily influence the behavior of the 

agent. This is because the agent’s sole purpose in reinforcement 

learning is to maximize the rewards earned. For Minesweeper, 

this is the reward function used in this paper: 

 

𝑅(𝑠, 𝑤𝑖𝑛) = 1000 
𝑅(𝑠, 𝑙𝑜𝑠𝑒) = −100 
𝑅(𝑠, 𝑢𝑛𝑐𝑜𝑣𝑒𝑟) = 5 
𝑅(𝑠, 𝑟𝑒𝑝𝑒𝑎𝑡) = −1 

 

As seen by the reward function, the agent is rewarded for 

winning the game, or uncovering a space. The agent is 

penalized for uncovering a mine, or attempting to uncover a 

space that has already been uncovered, denoted by “repeat.” 

III. CHALLENGES 

 

There are various challenges that will need to be addressed 

in applying RL to Minesweeper. The first challenge is 

managing exploration versus exploitation. Exploration refers to 

how the agent randomly interacts with the environment. Since 

the agent aims to maximize the rewards it earns, it typically will 

always choose the action it believes is optimal. Consequently, 

the agent repeatedly chooses the best action, which is 

exploitation. At the beginning of training, an RL agent typically 

begins with a high chance to choose random actions. This 

random chance will be decreased over time, to allow the agent 

to exploit more. In Minesweeper, having any random chance 

can be detrimental to the performance of the agent, as it could 

randomly choose a mine. To address this, the exploration versus 

exploitation strategy will need to be handled carefully to allow 

the agent to explore without randomly choosing a mine. 

 

Secondly, the Minesweeper board consists of sparse rewards. 

Most cells on the board are empty, and the agent will typically 

begin by repeatedly trying to uncover cells that are already 

revealed. At the beginning of training, the agent has not yet 

learned much about each choice to be made on the board, and 

very few actions may be taken which result in the agent earning 

a positive reward rather than being penalized. Mines are rather 

infrequent, but winning the game is even more infrequent. 

Thus, the agent will encounter few rewards contributing to the 

challenge of applying RL to Minesweeper. 

IV. STRATEGIES 

A. Q-learning 

Q-learning is a fundamental RL algorithm that uses a value-

based approach. It learns an action-value function to estimate 

the expected reward for each state-action pair [4]. Q-learning 

typically employs a strategy that varies between exploration 

and exploitation, which was discussed in the challenges 

section. It is known for its simplicity and ability to converge 

to an optimal policy with discrete state and action spaces [5]. 

 

More specifically, Q-learning involves learning an action 

value function, referred to as the Q-value function. Each Q-

value represents the expected reward of taking a specific 

action and subsequently acting optimally. The algorithm 

iteratively updates its Q-values using something called the 

Bellman equation [6]. Furthermore, Q-learning uses the 

exploration and exploitation strategy. Denoted by “epsilon,” 

the agent will act randomly with probability “epsilon” which 

is exploration, otherwise the agent will choose the optimal Q-

value, or exploration. The Q-values are updated with the 

following equation: 

 

𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) + 𝛼 ∗ (𝑟 + 𝛾 ∗ max
𝑎′

(𝑄(𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎)) 

 

In this equation Q(s, a) represents the Q-values for a state s 

and action a, r is the reward, alpha is the learning rate, gamma 

is the discount factor, and s’ and a’ represent the optimal 
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future action state pair. This equation will be applied using 

three different strategies. 

 

Strategy #1, Normal 

 

 
 

Figure 3: Board showing observation for normal Q-learning. 

 

In this strategy, the state, or the observation given to the agent 

of the environment, will be the entire 9x9 board. This will 

include the same state space, action space, and reward function 

as described earlier. Ideally, this would allow the agent to take 

the best action possible as it is able to observe the entire board. 

However, to be covered in detail later, this strategy paired with 

Q-learning fails to solve randomly generated 9x9 boards due to 

the extremely high state space. 

 

Strategy #2, Sliding Window 

 

 
 

Figure 4: Board showing observation for sliding window. 

 

This new strategy provides the agent with a much smaller 

observation of the environment. A 3x3 window starts in the top 

left corner of the board, the observation of this 3x3 window is 

given to the agent, in which the action is chosen and applied to 

the environment. Before moving the window, the agent is given 

the next state of the environment and the rewards it received. 

This strategy aims to reduce the state space and the action space. 

The new sizes of the state space and action space are as follows: 

 

|𝑆| ≈ ∑
9!

𝑛! (9 − 𝑛)!
⋅ 29−𝑛 = 19683

9

𝑛=0

 

|𝐴| = 10 

 

You may notice that the action space is 10, rather than 9 as 

would be expected on a 3x3 grid. In order to allow the agent to 

play the game without being forced to decide on each 3x3 

section, a new action called “no operation” or “noop” is added. 

In the case that the agent cannot make an informed decision on 

the small observation, it is allowed to choose to do nothing. A 

small penalty is given to ensure the agent will not continuously 

choose to not act and instead seek out to uncover spaces. In 

order to improve the optimization of rewards, the reward 

function of the environment is altered to: 

 

𝑅(𝑠, 𝑤𝑖𝑛) = 5 
𝑅(𝑠, 𝑙𝑜𝑠𝑒) = −100 
𝑅(𝑠, 𝑢𝑛𝑐𝑜𝑣𝑒𝑟) = 5 
𝑅(𝑠, 𝑟𝑒𝑝𝑒𝑎𝑡) = −1 
𝑅(𝑠, 𝑛𝑜𝑜𝑝) = −0.1 

 

A large reward for winning is no longer given, because it 

would violate the properties of the MDP. For example, the 

agent may get an identical observation of a 3x3 area. In case 1, 

all other possible 3x3 sections are already cleared, the agent 

only has one last decision to make. In case 2, the 3x3 section is 

identical but the other possible 3x3 sections may remain 

uncleared. If the agent was still rewarded 1000 for winning, it 

would cause inconsistent rewards to be given, because the same 

action would produce a reward of 1000 in case 1, but a reward 

of only 5 in case 2 despite the observations being identical. 

 

Strategy #3, Multi-Agent 

 

 
 

Figure 5: Board showing observation for each agent. 

 

The third and final strategy used for Q-learning involves an 

identical state and action space to the second strategy. However, 

instead of moving a window around for a single agent, this 

strategy involves creating 49 individual agents for every unique 

3x3 section of the board. This is a strategy known as multi agent 

Q-learning [7]. The state and action spaces are identical because 

of the 3x3 grid observation, and that each agent still has the 

option to not make an action. Additionally, the reward function 

remains identical. 

 

During training, one agent is chosen randomly from the 49 

agents to make an action. This ensures that each agent has an 

equal opportunity to learn and act on the board, rather than 

following a fixed order that may result in some agents getting 

less opportunities from other agents during training. 
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B. SARSA 

The second algorithm that will be used is known as State-

action-reward-state-action (SARSA). It is very similar to Q-

learning but has the distinct difference that it is on-policy rather 

than off-policy [8]. It updates the policy, or the Q-values based 

on the actions taken. This is different from Q-learning, which 

updated its values on the maximum expected Q-value for future 

actions, rather than actions taken. The algorithm is very similar: 

 

𝑄(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) + 𝛼 ∗ (𝑟 + 𝛾 ∗ (𝑄(𝑠′, 𝑎′) − 𝑄(𝑠, 𝑎)) 

 

The only difference in the algorithm is that the future Q-values 

Q(s’, a’) is the actual state and action pair of the environment 

based on the changes made by (s, a). 

 

The method of exploring is different, however. Q-learning 

randomly chooses when to explore whereas SARSA initializes 

the Q-values to a low value, to encourage exploration [2]. For 

the purposes of this paper, the state representation, action space, 

and reward function will remain identical to that of Strategy #1 

used for Q-learning. 

 

However, due to being an on-policy algorithm, SARSA will 

not be able to be implemented into the Strategy #2 and Strategy 

#3 used in Q-learning. The sliding window strategy will not 

work because SARSA learns off the actual best next action, 

which is disrupted or inconsistent due to the moving 

observation space. Similarly, in the third strategy there is an 

overlap between the agents' observation spaces. Another agent 

acting within the space of a different agent will not disrupt Q-

learning but will disrupt SARSA from choosing the correct 

actual action. 

 

V. ANALYSIS 

 

The first form of analysis will use the same conditions for 

each strategy. The environment will be identical for each 

strategy, besides the changes to the reward function discussed 

for the second and third Q-learning strategies. The board will 

be 9x9 with 10 mines randomly placed throughout the board. 

Each strategy will be trained in over 10,000 different episodes 

with 5 different random boards. One episode is the agent 

playing on one board until it wins or loses. 

 

 

 
Figure 6: Episodes rewards, length, and training error during 

training for normal Q-learning strategy. 

 

 

The three graphs represent the data of how the agent 

performed and interacted with the environment. The first graph 

shows the total sum of rewards earned for each episode. Over 

the 10,000 episodes it can clearly be seen that the agent was 

able to earn higher rewards before reaching a plateau. The 

second graph shows the episode lengths, or how many moves 

the agent made before it won or lost. Over each episode, the 

length tends to increase because the agent begins to learn to 

avoid the lines. The blue lines represent the raw data and not 

the average, so at the beginning there are certain episodes that 

become lengthy. This is because the agent takes time to learn 

that trying to uncover spaces that are already uncovered leads 

to a loss in rewards. The training error represents the difference 

between the expected reward of the action and the actual reward 

earned. The high spikes where the error rises to 1000 is around 

when the agent begins to win games, and the expected reward 

at the state is 0, which was the initial Q-value. Once the agent 

begins winning, the average error rises slightly before gradually 

decreasing to 0. 

 

 

 
Figure 7: Episodes rewards, length, and training error during 

training for sliding window Q-learning strategy. 

 

 

Due to the different observations given to the agent the data 

in these graphs differ slightly. Like the first strategy for Q-

learning, the episode rewards clearly rise and plateau, showing 

the agent has learned to increase the earned rewards. One 

difference is that the episode lengths rise much higher. This 

shows how the agent decides to not make an action many times, 

each time it doesn’t make an action counts as a step in the 

episode. The reason why the longest episodes only reach 1000 

steps is because the environment is forcibly ended if the agent 

isn’t making progress. If you compare the red line in the episode 

length to the previous strategy, it averages at around 200 rather 

than below 20. This is because the sliding window strategy 

typically forces the agent to not choose to make an action as the 

window moves, resulting in much longer episodes. 

 

 

 
Figure 8: Episodes rewards, length, and training error during 

training for multi-agent Q-learning strategy. 
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The graphs for this strategy vary greatly from the previous 

two. Due to the nature of having 49 individual agents and each 

one being chosen randomly; it produces the challenge of 

ensuring that the agents can interact with the environment 

without randomly choosing a mine. As a result, the exploration 

versus exploitation strategy is varied to heavily favor 

exploitation over exploration. This can easily be seen in the 

graph for the episode lengths, which experiences a much larger 

rise in the lengths. By heavily restricting the exploration 

strategy the episode lengths become much longer as the agents 

don’t randomly detonate mines. 

 

 
Figure 9: Episodes rewards, length, and training error during 

training for SARSA. 

 

 The final algorithm I will be going over in this analysis 

section is the results from the SARSA training. By simply 

comparing the shape of the graphs, the results seem the most 

like the normal Q-learning strategy. As was discussed in the 

Strategies section, SARSA is very similar to Q-learning. The 

episode rewards noticeably start at a much lower value. 

Compared to the normal Q-learning strategy, SARSA takes a 

longer time to begin earning any rewards in the environment. 

However, once SARSA begins earning rewards it can learn at 

a slightly faster rate than Q-learning. Furthermore, looking at 

the raw data in blue, the SARSA agent can begin winning 

games much earlier than the Q-learning agent. 

 

 The results from this show that the SARSA agent can learn 

quickly off less data. While this is not an issue with the 

Minesweeper game, it may be more applicable in real world 

applications. For example, in a situation where a robot learns 

to flip pancakes in the real physical world [9]. Although the 

robot can technically flip pancakes for as long as it wants, the 

time to physically perform the action may take long. If one 

were to have to choose between Q-learning or SARSA for this 

situation, it would be more suitable to choose SARSA. This 

would allow the robot to learn faster off less data, causing it to 

need less flips overall. 

 

VI. LARGER SCALE 

 

The previous analysis only used 5 different game boards over 

a rather small number of episodes. However, it shows insights 

into how the agents learn and interact with the environment. 

 

In order to properly evaluate their efficacy to win games of 

Minesweeper, we trained the agents on a much larger scale, 

only using randomly generated boards. For those more familiar 

with the intricacies of Minesweeper and board cycles [10], this 

large-scale test did not use board cycles. Each board was 

completely randomized. The following table represents the win 

rate of each strategy after being trained on 1,000,000 random 

boards, and then tested further on another 10,000 boards once 

training finished. 

 

Agent Type Win Rate 

Normal 0.00% 

SARSA 0.00% 

Sliding Window 1.53% 

Multi-Agent 4.18% 

Figure 10: Win rate for each agent type over 10,000 games 

after training 

 

The normal Q-learning approach, as expected, exhibited a 

win rate of 0.00%. Given the vast number of possible 

Minesweeper games, it is highly improbable that any of the 

training boards coincided with those encountered during the 

final 10,000 games. Furthermore, even if the same board did 

arise during training, the normal agent likely failed to achieve 

victory while playing it. 

 

In contrast, both the sliding window and decentralized 

methods demonstrated an ability to win some games after 

training. This success can be attributed to the fact that their state 

representations only encompassed 3x3 grids. The multi-agent 

approach appeared to be more effective in solving Minesweeper 

boards. This could be attributed to the fact that each agent 

remained static in its designated 3x3 area. Agents positioned in 

the corners exhibited less overlap with other agents, thus 

enabling them to learn and make more informed decisions. On 

the other hand, the sliding window method encountered 

limitations in making contextually nuanced decisions based on 

its relative position within the Minesweeper board, such as 

whether it occupied a corner, edge, or central region. 

 

The findings indicate that the localized nature of the sliding 

window and multi-agent methods facilitated improved 

performance in Minesweeper. By focusing on smaller, more 

manageable regions of the board, these approaches allowed the 

agents to develop strategies that were better suited to specific 

localized contexts. Consequently, the multi-agent method, 

which emphasized independent learning within designated 3x3 

areas, exhibited greater adaptability and effectiveness in 

achieving successful outcomes. 

 

It is worth noting that the win rates achieved by both the 

sliding window and decentralized methods are relatively low. 

This can be attributed to the inherent complexity and 

uncertainty of the Minesweeper game, even when employing 

Q-learning techniques. Nonetheless, the results highlight the 

potential of tailored Q-learning approaches in tackling large 

state space environments, such as Minesweeper, while offering 

valuable insights into the interplay between state representation 

and decision-making capabilities. 

 

Other papers that have explored the comparative 

performance of machine learning algorithms typically use the 

time to train as a metric [11], [12]. However, they do not 

provide enough justification as to why this is a valid measure of 
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performance. While it provides some insight into the time 

required to train a model, it is susceptible to various factors that 

can render it inaccurate. For example, the performance of a 

computer can vary depending on other tasks running 

concurrently, system load, available resources, and hardware 

specifications. 

 

I present a table of time to train for my methods, but to ensure 

the information can be trusted I trained the agents in a sandbox 

environment on my own computer. Each agent was given 4 

cores on an Intel Core i9-9900K CPU clocked at 3.60 GHz. 

Furthermore, each agent was given 16GB of memory. The 

training does not nearly use this much memory, but it is to 

ensure the agent is not restricted by hardware or other processes 

that may be running on my system. 

 

Agent Type Time To Train (hh:mm:ss) 

Normal 00:15:43 

SARSA 00:31:06 

Sliding Window 02:34:21 

Multi-Agent 03:45:53 

Figure 11: The time it took to train each agent type over 

1,000,000 games. 

 

It's worth noting that the time to train could be improved via 

software optimization and hardware acceleration. The 

presented times should only be compared to each other 

relatively, rather than accepted as the time to train on all 

systems. 

 

Considering the previous note, the normal approach or the 

first strategy took much less time to train. This is because the 

agent always has the entire board as the observation and can 

always make an action anywhere. Regardless, the normal Q-

learning agent was unable to achieve a single win after training. 

On the other hand, the other two strategies took much longer to 

train. This is because the episode lengths are much longer as 

most actions on the environment are the agent/agents choosing 

to not make any action. 

 

Finally, the second notable times to compare are between 

SARSA and the normal Q-learning strategy. The main 

difference in the algorithms is that the SARSA agent learns 

based off the actual best next action. In contrast, the Q-learning 

agent assumes it will act optimally in future decisions. Due to 

this, the SARSA agent takes a longer time to train over all the 

games. In the analysis section, it was seen that the SARSA 

agent was able to learn quickly off less data. This shows the 

tradeoff between using SARSA or Q-learning. In cases where 

you may have less data or have a limited number of times to act 

upon an environment, it would be better to use SARSA. 

 

VII. NEURAL NETWORKS 

 

Although I will refrain from going into detail on the 

complexities of how neural networks work, it is worth 

mentioning that other projects exist where reinforcement 

learning was applied to Minesweeper [13], [14]. In these 

projects, these GitHub users applied deep learning techniques 

using neural networks to the game Minesweeper. In the first 

project [13], the user used the same sized board as mine, along 

with the same number of mines. Since their code is open source, 

I was able to download their code and run it against my own 

environment to see the results. After training on 1,000,000 

games in the same environment as discussed in the analysis 

section and running on a further 10,000 games, I was able to 

achieve better results than my own. Their agent was able to win 

9.05% of games played after training. However, the time to 

train on my own system was longer than 24 hours. Similarly, 

applying the code written in the second project [14], I was able 

to achieve a win rate of 10.01% over a training time longer than 

24 hours.  

 

Although the win rates may be impressive compared to my 

own tactics which do not use neural networks, the training time 

is much too long to use on my own system. In a similar test, I 

attempted to train my Multi-Agent strategy over 10,000,000 

games in order to match the longer training time of neural 

networks. In the end, my Multi-Agent strategy was able to 

achieve a win rate of 8.78%.  

 

Despite taking 10x the amount of data, my Multi-Agent 

strategy was able to achieve an increased win rate and compare 

to the strategies of neural networks. This shows that although 

neural networks can learn patterns and solve games with a 

smaller amount of data, the computations required to do so take 

a long time. As a result, applying that same amount of training 

time but using more data to a simpler agent can result in a 

similar win rate. 

 

VIII. CONCLUSION 

 

In conclusion, employing strategies that simplify an agent's 

perception of the environment, such as in the context of 

Minesweeper, has demonstrated the ability of Q-learning 

methods to solve boards effectively without resorting to deep 

learning techniques. By reducing the problem to the smallest 

possible state representation, such as a 3x3 grid, it becomes 

feasible to make informed decisions within the game. 

 

The findings of this research shed light on the potential of Q-

learning to handle large state space environments while 

circumventing the complexities associated with deep neural 

networks. By leveraging localized observations and limiting the 

agent's focus to a smaller region of the board, it becomes 

possible to distill the problem into a more manageable and 

comprehensible form. 

 

The use of a sliding window or multi-agent approach in Q-

learning enabled agents to develop strategies that were tailored 

to specific localized contexts within Minesweeper. This 

approach fostered a deeper understanding of the game 

dynamics within the limited scope of the agent's perception, 

ultimately leading to improved performance. 
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The ability of Q-learning to tackle Minesweeper, even in its 

reduced state representation, highlights the adaptability and 

effectiveness of this reinforcement learning technique. By 

leveraging temporal difference learning and value iteration 

principles, Q-learning demonstrates its capability to navigate 

complex environments and make informed decisions based on 

limited observations. 

 

Future research that focuses on reinforcement learning 

without using deep learning or neural networks can focus on 

making logical inferences and simplifications to the 

environment to reduce the state space. This could reliably 

increase the performance of the agents on the environment, with 

the tradeoff being an increase in training time. The projects used 

in [13] and [14] rely on the pattern learning of neural networks 

but could likely see an increase in win rates if forced to make 

logical decisions on subdivisions of the environment. 
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