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Introduction

With the rising popularity of deep learning and neural
networks, other techniques have been less explored. |
aimed to implement various approaches to train an agent
to play Minesweeper with Q-learning, a popular
reinforcement learning algorithm. Reinforcement learning is
a machine learning method in which an agent interacts with
an environment and learns behavior based off rewards.

Reward State

action

Minesweeper's complexity was simplified by using two
strategies: a moving 3x3 grid and individual agents for each
3x3 section on the board. These changes allow the agent to
handle the game more easily.
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“Sliding Window”" Multi Agent

Q-learning is a method used to figure out the best action to
take in each situation. It works by estimating the rewards
for each possible action. This estimation is updated using a
specific formula:

Q(s,a) = Q(s,a) + a[R(s,a) +ymaxQ(s’,a’) = Q(s, a)]

* Qf(s, a): estimated reward

* a:learning rate

* R(s, a): actual reward received

e y:discount factor

« max_a 0Q(s, a);: maximum estimated reward of next

action
* During training, agent can act randomly to learn rewards

The following graphs represent data from training each agent type on 10,000 9x9 boards with 10 mines on 5 different seeds.

Normal Q-Learning

Uses entire board as the
observation

Quickly learns how to maximize
rewards
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“Sliding Window” Q-Learning

Uses a 3x3 section as the

observation

3x3 section is moved after each

time agent makes an action and ;:
updates

“No operation” introduced to allow
agent to not be forced to make
decisions

Rew

Multi Agent Q-Learning

49 individual agents each on a
unique 3x3 section

Section does not move

Agents chosen randomly to act
Also gives agents the option to not
act (no operation)

Heavily restrict exploration strategy
to ensure mine is not randomly

picked
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Variations on Q-Learning for Minesweeper
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* Trained on 1,000,000 games
* Percentage games won out of 10,000 after training
* Each board was 9x9 with 10 mines

Normal 0.00%
Sliding Window 1.53%
Multi Agent 4.18%

Conclusion

* The inherent complexity and diverse states of
Minesweeper pose a challenge to traditional Q-
learning.

 Simplification of the game board ensures
manageability and meaningful decision-making.

 This simplitication impacts the optimal application
of Q-learning to the entire Minesweeper board.

* The compromise allows for faster learning of
winning actions, preservation of board variety,
and reduced training time.

* Even though the integration of neural networks
could enhance performance, strategic
simplifications make them non-essential.
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